Predicting Hospital Readmission Using AI
POSTED : April 8, 2019
BY : Ham Pasupuleti

One of the biggest challenges to preventing readmissions is identifying patients who are at risk.

To crackdown on hospitals with high readmission rates and to improve patient healthcare, the Centers for Medicare and Medicaid Services (CMS) apply payment penalties to hospitals with higher than expected readmission rates. As a consequence, about 82 percent of CMS organizations received reduced reimbursements under the Hospital Readmissions Reduction Program in 2019. Healthcare leaders need smarter solutions to help prevent emergency department readmissions.

Predicting hospital readmission using AI

Download our healthcare whitepaper to see how we use artificial intelligence to improve the prediction of avoidable hospital readmissions, including:

  • Identifying patients at risk of readmission.
  • Replacing the LACE score with a new calculator.
  • How to reduce hospital financial burden.
  • Improvements to patient outcomes.

Concentrix Catalyst is the experience engineering firm. Together with the world’s most customer-obsessed companies, we combine great design and strong tech to build pioneering experiences that accelerate outcomes for your customers, partners, and employees. Through cutting-edge technology and a commitment to deep craftsmanship, we help our clients run the future.

About the Author

Ham Pasupuleti has held strategy and operations roles in the IT industry for more than 27 years, implementing and managing business-critical applications and systems infrastructure for Global 1000 companies. At Concentrix Catalyst, he provides business analytics and optimization solutions to healthcare organizations, enabling them to transform into outcome-based delivery models that are high quality, accountable, patient-centric, and cost-effective.

Tags: , ,